skip to main content


Search for: All records

Creators/Authors contains: "Woo, Christina M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Sanglifehrin A and B are immunosuppressive macrocyclic natural products endowed with and differentiated by a unique spirocyclic lactam. Herein, we report an enantioselective total synthesis and biological evaluation of sanglifehrin A and B and analogs. Access to the spirocyclic lactam was achieved through convergent assembly of a key pyranone intermediate followed by a stereo‐controlled spirocyclization. The 22‐membered macrocyclic core was synthesized by ring‐closing metathesis in the presence of 2,6‐bis(trifluoromethyl) benzeneboronic acid (BFBB). The spirocyclic lactam and macrocycle fragments were united by a Stille coupling to furnish sanglifehrin A and B. Additional sanglifehrin B analogs with variation at the C40 position were additionally prepared. Biological evaluation revealed that the2‐CF3analog of sanglifehrin B exhibited higher anti‐proliferative activity than the natural products sanglifehrin A and B in Jurkat cells. Both natural products induced higher‐order homodimerization of cyclophilin A (CypA), but only sanglifehrin A promoted CypA complexation with inosine‐5′‐monophosphate dehydrogenase 2 (IMPDH2). The synthesis reported herein will enable further evaluation of the spirolactam and its contribution to sanglifehrin‐dependent immunosuppressive activity.

     
    more » « less
  2. Abstract

    Sanglifehrin A and B are immunosuppressive macrocyclic natural products endowed with and differentiated by a unique spirocyclic lactam. Herein, we report an enantioselective total synthesis and biological evaluation of sanglifehrin A and B and analogs. Access to the spirocyclic lactam was achieved through convergent assembly of a key pyranone intermediate followed by a stereo‐controlled spirocyclization. The 22‐membered macrocyclic core was synthesized by ring‐closing metathesis in the presence of 2,6‐bis(trifluoromethyl) benzeneboronic acid (BFBB). The spirocyclic lactam and macrocycle fragments were united by a Stille coupling to furnish sanglifehrin A and B. Additional sanglifehrin B analogs with variation at the C40 position were additionally prepared. Biological evaluation revealed that the2‐CF3analog of sanglifehrin B exhibited higher anti‐proliferative activity than the natural products sanglifehrin A and B in Jurkat cells. Both natural products induced higher‐order homodimerization of cyclophilin A (CypA), but only sanglifehrin A promoted CypA complexation with inosine‐5′‐monophosphate dehydrogenase 2 (IMPDH2). The synthesis reported herein will enable further evaluation of the spirolactam and its contribution to sanglifehrin‐dependent immunosuppressive activity.

     
    more » « less